Технологии

Как искусственный интеллект влияет на автомобильную промышленность

30 Июля 2021
Как искусственный интеллект влияет на автомобильную промышленность

Инновации в области искусственного интеллекта продвигают автомобильную промышленность вперёд, выходя далеко за рамки автономности транспортных средств, – говорит д-р Ричард Альфельд, генеральный директор Monolith AI.

Искусственный интеллект стоит во главе самых инновационных областей автомобильной промышленности. Речь идёт не только об беспилотных автомобилях, но и о приложениях искусственного интеллекта, могущих произвести революцию в других областях: услуги мобильности, цепочки поставок, профилактическое обслуживание и обслуживание клиентов, и это лишь некоторые из них.

По мере того, как современные автомобили становятся всё более сложными в проектировании и изготовлении, AI работает всё больше, чтобы обеспечить повышение производительности, оптимизируя дизайн и производственные элементы, связанные с этим сектором.

На каждом этапе разработки в рамках производства требуется свой метод оценки характеристик автомобиля: моделирование CFD перед созданием любого прототипа, эксперименты в аэродинамической трубе и, в конечном итоге, испытания на треке. Тестирование на треке обеспечивает наиболее точные и релевантные результаты производительности, с которых можно начать процесс проектирования. Эти начальные испытания используются для направления разработки проектов, которые будут иметь наилучшие характеристики при испытаниях на треке в установившемся режиме.

Тестирование на треке предоставляет большие наборы данных от датчиков, измеряющих ускорение, скорость, температуру и многое другое. Понимание основных характеристик автомобиля в этой «динамичной» среде чрезвычайно сложно. Сложное взаимодействие всех компонентов автомобиля, погодных условий, условий трассы и стиля вождения создаёт огромный набор сложных многомерных данных. Вместо тестирования динамического отклика автомобиля некоторые производители проводят тестирование в «установившемся» режиме – например, при движении по прямой с постоянной скоростью. Это упрощает извлечение характеристик автомобиля из данных датчиков.

Однако у статического тестирования есть свои ограничения. Например, большинство этих тестов, выполняемых на реальных трассах, предназначено для оценки других аспектов характеристик автомобиля (таких как система охлаждения или комфорт водителя). На трассе проводятся отдельные тесты для сбора данных о стабильной реакции автомобиля. Даже после этого результирующие характеристики, измеренные в ходе этих испытаний в установившемся режиме, часто слишком упрощены для моделирования полного динамического отклика автомобиля.

Более элегантное решение – использовать алгоритмы искусственного интеллекта для изучения характеристик автомобиля в «переходных тестах». Эти алгоритмы динамического обучения изучают физику автомобиля, используя все доступные данные из обычных испытаний на реальных треках, без необходимости проведения отдельных тестов в установившемся режиме. Обученные модели можно использовать для прогнозирования динамического поведения автомобиля в случаях отсутствия его в поле зрения, например, на другом треке.

Динамические модели могут предсказывать сложное поведение, на которое модели устойчивого состояния не могут ответить. Например, в то время как стационарные модели могут отвечать только на такие вопросы, как «Какова моя прижимная сила на скорости 60 миль в час?», модель с динамическим обучением может ответить на вопрос: «Как повлияет на прижимную силу, если я разгоняюсь с 30 миль в час до 40 миль в час при резком левом повороте?». Более того, этот тест можно комбинировать с другими тестами, которые требуются по закону, что позволяет сэкономить деньги и недели тестирования.

Kistler, эксперт в области технологий динамических измерений давления, силы, крутящего момента и ускорения, использует технологию искусственного интеллекта для проведения испытаний на треке с целью прогнозирования силы, действующей на колёса автомобиля в различных обстоятельствах.

Модель обучается на существующих данных испытаний на треке, что позволяет прогнозировать динамическое поведение автомобиля в других обстоятельствах. На этапе оценки их модель может определять области с более высокой неопределённостью и чётко сообщать о них пользователю. Использование подобного цифрового тестирования сокращает количество дней личного тестирования, необходимых для точной оценки поведения автомобиля, до 70% - с 11 дней на трассе до трёх.

Было показано, что эти основанные на прогнозировании тесты AI позволяют инженерам экономить до 40% времени, которое они потратили бы на повторяющиеся задачи, а также экономят деньги на исследования и разработки. Учитывая растущее количество времени и ресурсов, затрачиваемых на понимание состояния и производительности удалённых активов, перспектива того, что машинное обучение может быть реализовано с помощью моделирования и симуляции, показывает большой потенциал AI.

Практически каждая часть автомобильного сектора переживает ту или иную форму цифровой трансформации, при этом AI резко сокращает время, в течение которого появляются эти инновации.

Хотя цели будут различаться в зависимости от того, что достигается, увеличение доли разработок, выполняемых в цифровом виде, а не физически, - это то, что мы наблюдаем во всем секторе.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный канал на TamTam

Источник: По материалам The Engineer
Короткая ссылка:  vestnik-glonass.ru/~osgxt
11.03.2025
В Экспоцентре города Москвы 22 апреля 2025 года состоится XVIII Международный навигационный форум - «Навитех-2025». Это ключевое событие в сфере использования навигационных и космических информационных технологий в России и странах ЕАЭС. В 2025 году программа форума направлена на комплексное развитие навигационной сферы, а также на интересы крупных заказчиков, производителей, интеграторов, разработчиков и поставщиков. Цель — построение прозрачного и предметного двустороннего сотрудничества.
28.02.2025
В Московском физико-техническом институте (МФТИ) создан испытательный центр, который будет заниматься тестированием спутников формата CubeSat.
21.01.2025
Ученые лаборатории космических систем и технологий Федерального исследовательского центра «Красноярский научный центр СО РАН» с помощью спутниковых сигналов навигационных систем ГЛОНАСС, GPS, Galileo и Beidou исследовали ледовый покров озер Иткуль и Шира в заповеднике Хакассии. В результате удалось получить информацию о толщине ледового покрова, его прочности, влажности, солености и температуры.
16.01.2025
Специалисты Центра исследования и разработки беспилотного транспорта подготовили рабочее место для аналитиков в салоне трамвая. Они тестируют базовые функции, а также установленные камеры, радары и лидары. Последние позволяют определять расстояние до объектов с точностью до двух сантиметров и обеспечивают обзор на 360 градусов.

СТАТЬИ ГЛОНАСС

НАВИГАЦИОННОЕ ПРАВО. Отрасль ли или фикция?
В юридической науке и нормотворческой практике применяется широко термин «отрасль права/отрасль законодательства». Одни теоретики их отождествляют, то есть полагают синонимами. Другие, различая право и закон, полагают их различными. То есть соотносящимися как содержание и форма. Практикам-«неюристам» эта дискуссионность неинтересна. Для них важен качественный нормативный документ как инструмент повседневной деятельности. Но на деле этот кажущийся схоластическим вопрос имеет вполне земное значение, касающееся каждого из нас. Особенно ярко это проявляется в сфере навигации, когда уже поголовно все население, исключая грудничков, обладает смартфонами, а значит, потенциально все эти владельцы – «субъекты персональной навигации». О классическом транспорте и субъектах еще более 50 видов экономической деятельности говорить не приходится. Не будет преувеличением сказать, что «география» применения навигационной информации, как продукта одного конкретного вида экономической деятельности, стала самой широкой в жизнедеятельности общества, обогнав связь и энергетику.
Необходим поиск отечественных специалистов в области кибербезопасности сельского хозяйства
Перспективы реализации дорожной карты одного из направлений Национальной технологической инициативы (НТИ) в области сельского хозяйства, по просьбе журнала «Вестник ГЛОНАСС», оценил эксперт в навигационно-информационной сфере Семён Видный. В современных, быстроизменяющихся условиях особого решения требуют вопросы безопасности (направление SafeNet), тем более на таком значимом для государства агросекторе. В этом направлении на данный момент – огромное количество профессиональных участников. Но большинство из них используют иностранные наработки, что в настоящий момент и на перспективу неприемлемо. Также все профессионалы никогда не занимались этим специфическим сектором экономики – сельским хозяйством. Так что здесь придётся ещё поискать участников.