Технологии

Государственные и частные структуры увеличивают инвестиции в квантовые технологии

1 Июня 2023
Государственные и частные структуры увеличивают инвестиции в квантовые технологии

Алгоритмы искусственного интеллекта быстро становятся частью повседневной жизни. Многие системы, требующие надёжной защиты, либо уже основаны на машинном обучении, либо скоро будут реализованы в таком ключе. Эти системы включают в себя распознавание лиц, банковское дело, приложения для военного целеуказания, а также роботов и автономные транспортные средства, и это ещё не всё.

Возникает вопрос: насколько эти алгоритмы машинного обучения защищены от вредоносных атак?

Учёные из Мельбурнского университета предположили, что интеграция квантовых вычислений в эти модели может привести к появлению новых алгоритмов с высокой устойчивостью к атакам злоумышленников.

Алгоритмы машинного обучения могут быть удивительно точными и эффективными для многих задач. Они особенно полезны для классификации и идентификации особенностей изображения. Однако они также очень уязвимы для атак с манипулированием данными, которые могут представлять серьёзную угрозу безопасности.

Атаки, включающие в себя очень тонкие манипуляции с данными изображений, могут быть запущены несколькими способами. Например, путём смешивания повреждённых данных с обучающим набором данных, используемым для обучения алгоритма, что приводит к тому, что он изучает то, чего не должен.

Обработанные данные также могут быть введены на этапе тестирования (после завершения обучения), в тех случаях, когда система AI продолжает обучать базовые алгоритмы во время использования.

Люди могут проводить такие атаки даже из физического мира. Кто-то может наклеить наклейку на знак остановки, чтобы обмануть AI беспилотного автомобиля и распознать его как знак ограничения скорости. Или, на передовой, солдаты могут носить униформу, которая может обмануть дроны на основе AI, чтобы они идентифицировали их как элементы ландшафта.

В любом случае последствия атак с манипулированием данными могут быть серьёзными. Например, если беспилотный автомобиль использует скомпрометированный алгоритм машинного обучения, он может счесть, что на дороге нет людей, хотя они есть.

Интеграция квантовых вычислений с машинным обучением может привести к появлению безопасных алгоритмов, называемых моделями квантового машинного обучения.

Эти алгоритмы разработаны для использования особых квантовых свойств, которые позволили бы им находить определённые закономерности в данных изображения, которыми нелегко манипулировать. Результатом станут устойчивые алгоритмы, защищённые даже от мощных атак. Они также не потребуют дорогостоящего «состязательного обучения», используемого в настоящее время для обучения алгоритмов тому, как противостоять таким атакам.

Помимо этого, квантовое машинное обучение может обеспечить более быстрое алгоритмическое обучение и большую точность в функциях обучения.

Современные классические компьютеры работают, сохраняя и обрабатывая информацию в виде «битов» или двоичных цифр, наименьших единиц данных, которые может обработать компьютер. В классических компьютерах, которые следуют законам классической физики, биты представлены в виде двоичных чисел, а именно 0 и 1.

Квантовые вычисления, с другой стороны, следуют принципам, используемым в квантовой физике. Информация в квантовых компьютерах хранится и обрабатывается как кубиты (квантовые биты), которые могут существовать как 0, 1 или их комбинация одновременно. Говорят, что квантовая система, которая существует в нескольких состояниях одновременно, находится в состоянии суперпозиции. Квантовые компьютеры можно использовать для разработки умных алгоритмов, использующих это свойство.

Однако, несмотря на значительные потенциальные преимущества использования квантовых вычислений для защиты моделей машинного обучения, это также может быть палкой о двух концах.

С одной стороны, модели квантового машинного обучения обеспечат критическую безопасность для многих конфиденциальных приложений. С другой стороны, квантовые компьютеры можно использовать для создания мощных противоборствующих атак, способных легко обмануть даже современные модели обычного машинного обучения.

Современные квантовые компьютеры относительно малы (менее 500 кубитов) и имеют высокий уровень ошибок. Ошибки могут возникать по нескольким причинам, включая несовершенное изготовление кубитов, ошибки в схеме управления или потерю информации (так называемую «квантовую декогеренцию») из-за взаимодействия с окружающей средой.

Тем не менее, за последние несколько лет мы наблюдаем огромный прогресс в области квантового оборудования и программного обеспечения. Согласно недавним дорожным картам квантового оборудования, ожидается, что квантовые устройства, созданные в ближайшие годы, будут иметь от сотен до тысяч кубитов.

Эти устройства должны иметь возможность запускать мощные модели квантового машинного обучения, чтобы помочь защитить широкий спектр отраслей, которые полагаются на инструменты машинного обучения и AI.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный Telegram-канал

Короткая ссылка:  vestnik-glonass.ru/~PeAUR
11.03.2025
В Экспоцентре города Москвы 22 апреля 2025 года состоится XVIII Международный навигационный форум - «Навитех-2025». Это ключевое событие в сфере использования навигационных и космических информационных технологий в России и странах ЕАЭС. В 2025 году программа форума направлена на комплексное развитие навигационной сферы, а также на интересы крупных заказчиков, производителей, интеграторов, разработчиков и поставщиков. Цель — построение прозрачного и предметного двустороннего сотрудничества.
28.02.2025
В Московском физико-техническом институте (МФТИ) создан испытательный центр, который будет заниматься тестированием спутников формата CubeSat.
21.01.2025
Ученые лаборатории космических систем и технологий Федерального исследовательского центра «Красноярский научный центр СО РАН» с помощью спутниковых сигналов навигационных систем ГЛОНАСС, GPS, Galileo и Beidou исследовали ледовый покров озер Иткуль и Шира в заповеднике Хакассии. В результате удалось получить информацию о толщине ледового покрова, его прочности, влажности, солености и температуры.
16.01.2025
Специалисты Центра исследования и разработки беспилотного транспорта подготовили рабочее место для аналитиков в салоне трамвая. Они тестируют базовые функции, а также установленные камеры, радары и лидары. Последние позволяют определять расстояние до объектов с точностью до двух сантиметров и обеспечивают обзор на 360 градусов.

СТАТЬИ ГЛОНАСС

НАВИГАЦИОННОЕ ПРАВО. Отрасль ли или фикция?
В юридической науке и нормотворческой практике применяется широко термин «отрасль права/отрасль законодательства». Одни теоретики их отождествляют, то есть полагают синонимами. Другие, различая право и закон, полагают их различными. То есть соотносящимися как содержание и форма. Практикам-«неюристам» эта дискуссионность неинтересна. Для них важен качественный нормативный документ как инструмент повседневной деятельности. Но на деле этот кажущийся схоластическим вопрос имеет вполне земное значение, касающееся каждого из нас. Особенно ярко это проявляется в сфере навигации, когда уже поголовно все население, исключая грудничков, обладает смартфонами, а значит, потенциально все эти владельцы – «субъекты персональной навигации». О классическом транспорте и субъектах еще более 50 видов экономической деятельности говорить не приходится. Не будет преувеличением сказать, что «география» применения навигационной информации, как продукта одного конкретного вида экономической деятельности, стала самой широкой в жизнедеятельности общества, обогнав связь и энергетику.
Необходим поиск отечественных специалистов в области кибербезопасности сельского хозяйства
Перспективы реализации дорожной карты одного из направлений Национальной технологической инициативы (НТИ) в области сельского хозяйства, по просьбе журнала «Вестник ГЛОНАСС», оценил эксперт в навигационно-информационной сфере Семён Видный. В современных, быстроизменяющихся условиях особого решения требуют вопросы безопасности (направление SafeNet), тем более на таком значимом для государства агросекторе. В этом направлении на данный момент – огромное количество профессиональных участников. Но большинство из них используют иностранные наработки, что в настоящий момент и на перспективу неприемлемо. Также все профессионалы никогда не занимались этим специфическим сектором экономики – сельским хозяйством. Так что здесь придётся ещё поискать участников.