Технологии

Наиболее распространённые технологии обработки спутниковых изображений

16 Апреля 2021
Наиболее распространённые технологии обработки спутниковых изображений


Данные дистанционного зондирования могут содержать шум и другие недостатки, вызванные бортовыми датчиками или трансляцией. Поэтому чаще применяется процесс предварительной обработки изображений, чтобы справиться с подобного рода дефектами.

Обработка изображений – это технология выполнения определённых операций над изображением с целью получить улучшенное изображение или извлечь из него какую-то полезную информацию. Это тип обработки сигналов, в котором входным является изображение, а выходным может быть изображение или характеристики/особенности, связанные с этим изображением.

Существует несколько методов обработки изображений, используемых для наблюдения Земли. Их делят на четыре широкие категории:

  • Предварительная обработка,

  • Преобразование,

  • Коррекция,

  • Классификация.

Некоторые искажения должны быть исправлены до проведения анализа и методов постобработки. Операции подготовки и обработки изображений, выполняемые перед анализом для исправления или минимизации искажений изображения, называют методами предварительной обработки.

Некоторые типичные операции предварительной обработки включают следующие типы (не ограничиваясь ими):

  • Радиометрическая коррекция;

  • Атмосферные поправки;

  • Геометрическая коррекция.

Радиометрические искажения обычно возникают из двух источников: характеристик датчиков и разницы в условиях освещения. При таком типе искажений могут возникнуть общие проблемы с визуализацией, когда полученное изображение может не совпадать с излучаемой или отражённой энергией объектов. Поэтому радиометрические искажения необходимо обрабатывать перед интерпретацией и анализом изображений.

Радиометрические поправки подразделяются на две широкие категории: Радиометрические поправки на угол направления на Солнце/топографию и радиометрические поправки на дефекты датчиков.

Радиометрические поправки на угол направления на Солнце/топографию корректируют эффекты диффузии солнечного света, особенно на водной поверхности и в горах, оценивая кривую затенения.

С другой стороны, коррекции дефектов датчика включают в себя удаление радиометрического шума из-за изменения чувствительности датчика или ухудшения его работы. Процесс коррекции в рамках этой категории вычисляет новые соотношения между калиброванным измерением освещённости и выходным сигналом датчика. Поэтому этот процесс также называется калибровкой.

Излучение с поверхности Земли проходит через различные атмосферные взаимодействия, прежде чем достичь датчика. Трудно получить явную сцену наблюдения, и на неё могут повлиять, например, облака и аэрозоли в атмосфере. Поэтому многие изображения содержат атмосферный шум, искажающий интерпретацию изображения, и нуждаются в коррекции.

Методы атмосферной коррекции также делятся на две широкие категории: метод абсолютной коррекции и метод относительной коррекции.

Метод абсолютной коррекции учитывает несколько зависящих от времени параметров, включая зенитный угол Солнца, общую оптическую глубину аэрозоля, освещённость в верхней части атмосферы и геометрию обзора датчика для коррекции атмосферных искажений.

Однако методы абсолютной коррекции весьма сложны, и точные измерения атмосферных условий – сложная задача. Часто используются методы относительной коррекции, которые включают нормализацию нескольких изображений, собранных из разных данных нескольких картинок, включая эталонную.

Когда записываются данные дистанционного зондирования в движении, часто возникают геометрические искажения из-за изменения высоты, отклонений датчика относительно земли. В идеале был бы пиксель или сцена с точным местоположением или точкой сетки на земле с двумя различными изображениями, сделанными в разное время.

Поэтому необходимо проводить геометрические поправки, чтобы избежать этих геометрических искажений и установить связь между системой координат изображения (CRS) и географической CRS для улучшения пространственных совпадений изображений.

Традиционные геометрические поправки отнимают много времени и требуют ручной идентификации. Однако с развитием технологий дистанционного зондирования поставщики услуг теперь включают орторектификацию, которая требует больше информации, чем геопривязка с наземными контрольными точками. Орторектификация исправляет искажения от наклона датчика и рельефа Земли (смещение рельефа) и необходима для большинства приложений наблюдения Земли.

Радиометрические, атмосферные и геометрические поправки являются одним из наиболее часто используемых методов предварительной обработки данных дистанционного зондирования.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный канал на TamTam

Источник: По материалам интернет-ресурса Medium
Короткая ссылка:  vestnik-glonass.ru/~8lCRY
26.04.2024
КНР будет использовать ожидаемые пусковые мощности развивающегося коммерческого космического сектора страны, чтобы реализовать свои планы по созданию мегасозвездий.
25.04.2024
В современном автомобильном мире автомобили превращаются из простых видов транспорта во взаимосвязанные технологические центры. Подключённые автомобили используют множество цифровых функций и технологий для повышения безопасности, удобства и в целом удовольствия от вождения.
22.04.2024
На базе ФГУП «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ВНИИФТРИ) открыли уникальный многофункциональный метрологический бассейн, который поможет кратно повысить точность измерений.
19.04.2024
Отечественные разработчики создали устройство высокоточной навигации, которое уже тестируется в «умном» сельском хозяйстве, до конца года его планируют протестировать на море. Об этом сообщил генеральный директор ГП КС Алексей Волин на встрече с представителями индустрии в рамках Демо-дня ИЦК «Спутниковая связь» в Великом Новгороде.

СТАТЬИ ГЛОНАСС

Необходим поиск отечественных специалистов в области кибербезопасности сельского хозяйства
Перспективы реализации дорожной карты одного из направлений Национальной технологической инициативы (НТИ) в области сельского хозяйства, по просьбе журнала «Вестник ГЛОНАСС», оценил эксперт в навигационно-информационной сфере Семён Видный. В современных, быстроизменяющихся условиях особого решения требуют вопросы безопасности (направление SafeNet), тем более на таком значимом для государства агросекторе. В этом направлении на данный момент – огромное количество профессиональных участников. Но большинство из них используют иностранные наработки, что в настоящий момент и на перспективу неприемлемо. Также все профессионалы никогда не занимались этим специфическим сектором экономики – сельским хозяйством. Так что здесь придётся ещё поискать участников.
Аграриям предстоит работать в одной системе координат
Как известно, основой современного цифрового агрокомплекса является картогорафирование. Семён Видный, эксперт в области применения современных навигационно-информационных технологий в сельском хозяйстве поделился с читателями журнала «Вестник ГЛОНАСС» с кругом решаемых проблем при обработке массивов картографических данных. Таким образом, выяснилось, что все используют данные в различных системах координат, но пытаются укладывать их на одну картографическую основу и, соответственно, получают нестыковки и ошибки. Всё это приводит к тому, что используемые данные из Роскадастра, из Центров химизации и от высокоточных источников (данные дистанционного зондирования Земли, данные с беспилотников и высокоточных навигационных или геодезических приборов) не состыковываются друг с другом и только вводят в заблуждение сельхозтоваропроизводителей и собственников сельхозземель. И это также отражается на отношениях со смежными землепользователями.