Технологии

Выход из многолучевости: оптимизация на основе графов для надёжной навигации

14 Апреля 2022
Выход из многолучевости: оптимизация на основе графов для надёжной навигации

Беспилотные автомобили и наружные мобильные роботы, чтобы достичь точности позиционирования хотя бы меньше нескольких метров, должны преодолевать многолучевые сигналы, состоящие из множества отражённых и преломленных сигналов. Этого недостаточно для автономной навигации. Комбинирование ГНСС с другими датчиками и данными 3D-картографии очень сложно и дорого. То есть существует потребность в повышении точности позиционирования в городских условиях с использованием только ГНСС.

В последнее время внимание привлекают методы, использующие оптимизацию на основе графов, включая исследования в области робототехники и компьютерного зрения. По сравнению с традиционными подходами к фильтрации, такой подход обычно обеспечивает лучшую производительность при интеграции с несколькими датчиками.

Надёжная и точная оценка положения транспортного средства путём добавления нового типа ограничения в оптимизацию на основе графа использует один приёмник с ГНСС-кинематикой относительного времени в реальном времени (TR-RTK), точным ограничением между прошлыми и текущими точками пересечения. Кроме того, добавление смещения часов между ГНСС с несколькими созвездиями в качестве оцениваемого состояния и использование переключаемого ограничения для исключения наблюдений псевдодальности и доплеровской частоты с несколькими ГНСС, которые включают ошибки многолучевости, повышает точность позиционирования.

Проблему позиционирования ГНСС можно свести, таким образом, к задаче оптимизации путём построения графа показателей на основе наблюдений ГНСС.

Точность оценки положения с помощью оптимизации графа показателей существенно зависит от структуры графа и типа используемых факторов. Самая простая структура в качестве границ напрямую использует положение и скорость, вычисленные ГНСС, и называется «слабая связь» (LC). «Сильная связь» (ТС) использует псевдодальность и доплеровские наблюдения от каждого спутника ГНСС в качестве границ. В случае TC к расчётному состоянию необходимо добавить смещение часов приёмника ГНСС. По сравнению с LC, TC может обрабатывать наблюдения с каждого спутника независимо, поэтому к наблюдениям каждого спутника можно применять методы исключения выбросов, такие как переключаемые ограничения. Поэтому ожидается, что TC повысит точность позиционирования в условиях многолучевости.

Однако точность наблюдений псевдодальностей находится на уровне метра и подвержена многолучевому распространению сигналов. Здесь мы добавляем ограничения TR-RTK-GNSS сантиметрового уровня в структуру графа на основе TC, используя наблюдения из группировки с несколькими ГНСС, чтобы обеспечить надёжное позиционирование ГНСС в многолучевых средах.

Для подтверждения эффективности предложенного метода в Японии были проведены тесты кинематического позиционирования с использованием транспортного средства в реальных городских условиях. Для оценки использовалась система с многочастотным приёмником ГНСС и высококачественным IMU. Результаты показывают, что предлагаемый метод имеет самую высокую точность по сравнению с общим методом позиционирования по одной точке, комбинированным методом со свободной связью и комбинированным методом TC.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный Telegram-канал

Источник: По материалам Inside GNSS
Короткая ссылка:  vestnik-glonass.ru/~rTRiT
30.06.2025
Австралийские учёные провели эксперимент, чтобы понять, как бабочки-богуны находят дорогу. Они поместили бабочек в симулятор полёта и отключили магнитное поле Земли. В таких условиях бабочки всё равно летели в нужном направлении. Это значит, что они ориентируются по звёздам.
27.06.2025
Роскосмос, естественно, диктует государственную политику, предприятия собирают какие-то системы и комплексы, научные школы обеспечивают кадры и сами школы, а мы должны поддерживать те технологии, из которых будут собираться соответствующие системы. Что мы, собственно, и делаем.
26.06.2025
В современном мире технологии навигации широко применяются в различных сферах деятельности человека. Особенно эффективно системы управления подвижными объектами (ПО) работают, когда в них интегрированы навигационные, телекоммуникационные, программно-картографические и программно-математические инструменты.
19.06.2025
В рамках Петербургского международного экономического форума (ПМЭФ-2025) будет представлен стратегический проект «Геокупол», разработанный Московским Государственным университетом геодезии и картографии.

СТАТЬИ ГЛОНАСС

НАВИГАЦИОННОЕ ПРАВО. Отрасль ли или фикция?
В юридической науке и нормотворческой практике применяется широко термин «отрасль права/отрасль законодательства». Одни теоретики их отождествляют, то есть полагают синонимами. Другие, различая право и закон, полагают их различными. То есть соотносящимися как содержание и форма. Практикам-«неюристам» эта дискуссионность неинтересна. Для них важен качественный нормативный документ как инструмент повседневной деятельности. Но на деле этот кажущийся схоластическим вопрос имеет вполне земное значение, касающееся каждого из нас. Особенно ярко это проявляется в сфере навигации, когда уже поголовно все население, исключая грудничков, обладает смартфонами, а значит, потенциально все эти владельцы – «субъекты персональной навигации». О классическом транспорте и субъектах еще более 50 видов экономической деятельности говорить не приходится. Не будет преувеличением сказать, что «география» применения навигационной информации, как продукта одного конкретного вида экономической деятельности, стала самой широкой в жизнедеятельности общества, обогнав связь и энергетику.