Технологии

Перспективы интеграции дистанционного зондирования следующего поколения с искусственным интеллектом

21 Февраля 2024
Перспективы интеграции дистанционного зондирования следующего поколения с искусственным интеллектом

В постоянно развивающемся мире технологий интеграция искусственного интеллекта (ИИ) с дистанционным зондированием (ДЗЗ) открыла новый рубеж в извлечении пространственных данных. Этот подход меняет способы сбора, анализа и интерпретации пространственных данных, что приводит к более точным и эффективным результатам.

ИИ с его способностью учиться и адаптироваться оказался фактором в различных областях, и ДЗЗ не стало исключением. Он потенциально может автоматизировать процесс извлечения данных, делая его более быстрым и надёжным. Более того, алгоритмы ИИ могут обрабатывать большие объёмы данных, что было большой проблемой при ДЗЗ.

Одним из существенных преимуществ ИИ в дистанционном зондировании является его способность повышать точность извлечения данных. Традиционные методы часто включают в себя ручную интерпретацию, которая может быть подвержена ошибкам. Алгоритмы ИИ могут анализировать данные с высоким уровнем точности, снижая риск неточностей.

Машинное обучение, разновидность ИИ, оказалось особенно эффективным в ДЗЗ. Оно предполагает обучение модели с использованием набора данных, что затем позволяет ей делать прогнозы или принимать решения. Этот подход использовался в дистанционном зондировании для выявления закономерностей и извлечения информации из пространственных данных.

Например, алгоритмы машинного обучения можно использовать для классификации типов растительного покрова на основе спутниковых изображений. Это может быть особенно полезно при мониторинге изменений окружающей среды, таких как вырубка лесов или урбанизация. Кроме того, машинное обучение также можно использовать для прогнозирования погоды, борьбы со стихийными бедствиями и других приложений.

Глубокое обучение является частью машинного обучения, которое показывает большие перспективы в извлечении пространственных данных. Он предполагает обучение нейронной сети с помощью больших объёмов данных, что позволяет ей изучать сложные закономерности и делать точные прогнозы. Этот подход использовался в ДЗЗ для извлечения информации из спутниковых изображений и других пространственных данных.

Например, алгоритмы глубокого обучения могут использоваться для идентификации объектов или особенностей на спутниковых изображениях, таких как здания, дороги или растительность. Это может быть особенно полезно в городском планировании, мониторинге окружающей среды и других приложениях. Кроме того, глубокое обучение также можно использовать в прогнозировании погоды, борьбе со стихийными бедствиями и других областях.

ИИ расширяет возможности машинного обучения, включая человеческий уровень, позволяя принимать решения, распределять ресурсы и обнаруживать новую информацию, выходящую за пределы обучения. В сфере извлечения пространственных данных влияние машинного обучения неуклонно растёт, но ИИ идёт ещё дальше, плавно интегрируясь в рабочие процессы для автоматизации процессов извлечения и принятия решений. Это поощряет преобразование идей в практические шаги.

Примечательное преимущество ИИ при извлечении пространственных данных заключается в его способности повышать точность результатов. В отличие от традиционных методов, основанных на ручной интерпретации или машинном обучении, основанном на обучении алгоритмов, ИИ обещает постоянное самосовершенствование.

Участие человека приводит к неизбежным предубеждениям и колебаниям производительности. Теперь представьте себе потенциал повышения скорости принятия решений и общей эффективности рабочего процесса. ИИ, смягчая человеческие предубеждения и обеспечивая стабильную производительность, может внести значительный вклад в оптимизацию процессов принятия решений при извлечении пространственных данных.

Синергия между ИИ и ДЗЗ находится на ранней стадии, но её потенциал огромен. Учитывая постоянное совершенствование алгоритмов искусственного интеллекта и расширение доступности пространственных данных, ожидаются значительные успехи в этой области.

Одним из многообещающих направлений роста является интеграция ИИ в анализ данных в реальном времени. Это может революционизировать интерпретацию данных дистанционного зондирования, способствуя быстрому принятию решений в критических ситуациях, например, во время стихийных бедствий. Представьте себе сценарий, в котором ресурсы объективно распределяются между теми, кто в них нуждается срочно — процесс, оптимизированный машинами, которые систематически обрабатывают все доступные данные для принятия объективных и обоснованных решений после события. Более того, применение ИИ обещает повысить точность прогнозов, что окажется ценным для превентивных мер, локализованного прогнозирования погоды и мониторинга окружающей среды после событий. Потенциальные последствия использования ИИ в ДЗЗ выходят далеко за рамки нынешнего ландшафта, показывая будущее, в котором технологии значительно расширят нашу способность эффективно реагировать на динамические ситуации.

Несмотря на потенциальные преимущества, интеграция ИИ с ДЗЗ создаёт ряд проблем. Основной проблемой является значительный объём обучающих данных, необходимых для эффективного обучения алгоритмов ИИ. Эта задача осложняется зачастую ограниченным доступом к данным ДЗЗ из-за ограничений по лицензированию и закупкам поставщиков.

Однако эти проблемы также открывают путь для инноваций. Есть возможность инвестировать в облачные решения, обеспечивающие доступ и анализ без необходимости покупки данных. Эта инициатива снижает ценовые барьеры, лицензионные ограничения и препятствия к доступу, создавая значительные возможности для профессионалов в области ДЗЗ.

Интеграция ИИ с ДЗЗ знаменует собой примечательный прогресс в извлечении пространственных данных. Способность автоматизировать процессы извлечения и повысить точность результатов делает ИИ преобразующей силой в этой области. По мере того, как мы исследуем потенциал этой технологии, нас ждёт будущее, в котором извлечение пространственных данных станет быстрее, точнее и эффективнее, чем когда-либо прежде.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный Telegram-канал

По материалам открытых источников

Короткая ссылка:  vestnik-glonass.ru/~QCOlI
20.11.2024
Две нейронные цепи, расположенные в ретроспленальной коре (RSC) мозга, напрямую связаны с пространственной навигацией и хранением памяти, предположили исследователи из Калифорнийского университета.
18.11.2024
Индия готова запустить свой самый совершенный космический аппарат связи GSAT-N2, созданный Индийской организацией космических исследований (ISRO), весом 4700 кг, также называемый GSAT-20.
14.11.2024
В обозримом будущем перед нами замаячил новый тренд: технология прямого доступа с мобильного телефона к спутниковым каналам связи Direct-to-Device (D2D). Несколько известных международных компаний уже заявили о пробных кейсах внедрения новой технологии, заявляют авторы аналитического исследования в журнале АО «Организация «Агат» «Экономика космоса».
08.11.2024
Век назад, 10 ноября 1924 года, в небольшом селе Одесской губернии Украинской ССР родился будущий великий ученый, инженер-конструктор, один из основоположников отечественной космонавтики Михаил Фёдорович Решетнёв. Он стал учеником и сподвижником главного конструктора ракетно-космической техники Сергея Павловича Королёва. Под его руководством и с его непосредственным участием было разработано около 30 типов космических комплексов и систем.

СТАТЬИ ГЛОНАСС

Необходим поиск отечественных специалистов в области кибербезопасности сельского хозяйства
Перспективы реализации дорожной карты одного из направлений Национальной технологической инициативы (НТИ) в области сельского хозяйства, по просьбе журнала «Вестник ГЛОНАСС», оценил эксперт в навигационно-информационной сфере Семён Видный. В современных, быстроизменяющихся условиях особого решения требуют вопросы безопасности (направление SafeNet), тем более на таком значимом для государства агросекторе. В этом направлении на данный момент – огромное количество профессиональных участников. Но большинство из них используют иностранные наработки, что в настоящий момент и на перспективу неприемлемо. Также все профессионалы никогда не занимались этим специфическим сектором экономики – сельским хозяйством. Так что здесь придётся ещё поискать участников.
Аграриям предстоит работать в одной системе координат
Как известно, основой современного цифрового агрокомплекса является картогорафирование. Семён Видный, эксперт в области применения современных навигационно-информационных технологий в сельском хозяйстве поделился с читателями журнала «Вестник ГЛОНАСС» с кругом решаемых проблем при обработке массивов картографических данных. Таким образом, выяснилось, что все используют данные в различных системах координат, но пытаются укладывать их на одну картографическую основу и, соответственно, получают нестыковки и ошибки. Всё это приводит к тому, что используемые данные из Роскадастра, из Центров химизации и от высокоточных источников (данные дистанционного зондирования Земли, данные с беспилотников и высокоточных навигационных или геодезических приборов) не состыковываются друг с другом и только вводят в заблуждение сельхозтоваропроизводителей и собственников сельхозземель. И это также отражается на отношениях со смежными землепользователями.