Технологии

Наиболее распространённые технологии обработки спутниковых изображений

16 Апреля 2021
Наиболее распространённые технологии обработки спутниковых изображений


Данные дистанционного зондирования могут содержать шум и другие недостатки, вызванные бортовыми датчиками или трансляцией. Поэтому чаще применяется процесс предварительной обработки изображений, чтобы справиться с подобного рода дефектами.

Обработка изображений – это технология выполнения определённых операций над изображением с целью получить улучшенное изображение или извлечь из него какую-то полезную информацию. Это тип обработки сигналов, в котором входным является изображение, а выходным может быть изображение или характеристики/особенности, связанные с этим изображением.

Существует несколько методов обработки изображений, используемых для наблюдения Земли. Их делят на четыре широкие категории:

  • Предварительная обработка,

  • Преобразование,

  • Коррекция,

  • Классификация.

Некоторые искажения должны быть исправлены до проведения анализа и методов постобработки. Операции подготовки и обработки изображений, выполняемые перед анализом для исправления или минимизации искажений изображения, называют методами предварительной обработки.

Некоторые типичные операции предварительной обработки включают следующие типы (не ограничиваясь ими):

  • Радиометрическая коррекция;

  • Атмосферные поправки;

  • Геометрическая коррекция.

Радиометрические искажения обычно возникают из двух источников: характеристик датчиков и разницы в условиях освещения. При таком типе искажений могут возникнуть общие проблемы с визуализацией, когда полученное изображение может не совпадать с излучаемой или отражённой энергией объектов. Поэтому радиометрические искажения необходимо обрабатывать перед интерпретацией и анализом изображений.

Радиометрические поправки подразделяются на две широкие категории: Радиометрические поправки на угол направления на Солнце/топографию и радиометрические поправки на дефекты датчиков.

Радиометрические поправки на угол направления на Солнце/топографию корректируют эффекты диффузии солнечного света, особенно на водной поверхности и в горах, оценивая кривую затенения.

С другой стороны, коррекции дефектов датчика включают в себя удаление радиометрического шума из-за изменения чувствительности датчика или ухудшения его работы. Процесс коррекции в рамках этой категории вычисляет новые соотношения между калиброванным измерением освещённости и выходным сигналом датчика. Поэтому этот процесс также называется калибровкой.

Излучение с поверхности Земли проходит через различные атмосферные взаимодействия, прежде чем достичь датчика. Трудно получить явную сцену наблюдения, и на неё могут повлиять, например, облака и аэрозоли в атмосфере. Поэтому многие изображения содержат атмосферный шум, искажающий интерпретацию изображения, и нуждаются в коррекции.

Методы атмосферной коррекции также делятся на две широкие категории: метод абсолютной коррекции и метод относительной коррекции.

Метод абсолютной коррекции учитывает несколько зависящих от времени параметров, включая зенитный угол Солнца, общую оптическую глубину аэрозоля, освещённость в верхней части атмосферы и геометрию обзора датчика для коррекции атмосферных искажений.

Однако методы абсолютной коррекции весьма сложны, и точные измерения атмосферных условий – сложная задача. Часто используются методы относительной коррекции, которые включают нормализацию нескольких изображений, собранных из разных данных нескольких картинок, включая эталонную.

Когда записываются данные дистанционного зондирования в движении, часто возникают геометрические искажения из-за изменения высоты, отклонений датчика относительно земли. В идеале был бы пиксель или сцена с точным местоположением или точкой сетки на земле с двумя различными изображениями, сделанными в разное время.

Поэтому необходимо проводить геометрические поправки, чтобы избежать этих геометрических искажений и установить связь между системой координат изображения (CRS) и географической CRS для улучшения пространственных совпадений изображений.

Традиционные геометрические поправки отнимают много времени и требуют ручной идентификации. Однако с развитием технологий дистанционного зондирования поставщики услуг теперь включают орторектификацию, которая требует больше информации, чем геопривязка с наземными контрольными точками. Орторектификация исправляет искажения от наклона датчика и рельефа Земли (смещение рельефа) и необходима для большинства приложений наблюдения Земли.

Радиометрические, атмосферные и геометрические поправки являются одним из наиболее часто используемых методов предварительной обработки данных дистанционного зондирования.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный канал на TamTam

Источник: По материалам интернет-ресурса Medium
Короткая ссылка:  vestnik-glonass.ru/~8lCRY
14.01.2025
Молодые учёные из Тульского государственного университета (ТулГУ) представили инновационный электронный компас, который призван повысить точность навигации движущихся объектов в условиях арктических регионов. Об этом стало известно из сообщения пресс-службы Министерства науки и высшего образования Российской Федерации.
13.01.2025
Ученые Пермского Политеха просчитали как необходимо доработать конструкцию ионного двигателя на спутниках, чтобы повысить его надежность. Силовые установки используются для управления ориентацией и положением аппарата в космическом пространстве.
28.12.2024
Глобальные навигационные спутниковые системы достигли значительного прогресса в наблюдении за Землёй. Четыре ГНСС (ГЛОНАСС, GPS, BeiDou и Galileo) теперь доступны по всему миру. Эти системы широко используются в позиционировании, навигации и синхронизации (PNT).
26.12.2024
Ученые МФТИ разработали программу для формирования высококачественных изображений космических объектов, что улучшит мониторинг околоземного пространства и навигацию в космосе. Об этом сообщили в Центре научной коммуникации МФТИ.

СТАТЬИ ГЛОНАСС

НАВИГАЦИОННОЕ ПРАВО. Отрасль ли или фикция?
В юридической науке и нормотворческой практике применяется широко термин «отрасль права/отрасль законодательства». Одни теоретики их отождествляют, то есть полагают синонимами. Другие, различая право и закон, полагают их различными. То есть соотносящимися как содержание и форма. Практикам-«неюристам» эта дискуссионность неинтересна. Для них важен качественный нормативный документ как инструмент повседневной деятельности. Но на деле этот кажущийся схоластическим вопрос имеет вполне земное значение, касающееся каждого из нас. Особенно ярко это проявляется в сфере навигации, когда уже поголовно все население, исключая грудничков, обладает смартфонами, а значит, потенциально все эти владельцы – «субъекты персональной навигации». О классическом транспорте и субъектах еще более 50 видов экономической деятельности говорить не приходится. Не будет преувеличением сказать, что «география» применения навигационной информации, как продукта одного конкретного вида экономической деятельности, стала самой широкой в жизнедеятельности общества, обогнав связь и энергетику.
Необходим поиск отечественных специалистов в области кибербезопасности сельского хозяйства
Перспективы реализации дорожной карты одного из направлений Национальной технологической инициативы (НТИ) в области сельского хозяйства, по просьбе журнала «Вестник ГЛОНАСС», оценил эксперт в навигационно-информационной сфере Семён Видный. В современных, быстроизменяющихся условиях особого решения требуют вопросы безопасности (направление SafeNet), тем более на таком значимом для государства агросекторе. В этом направлении на данный момент – огромное количество профессиональных участников. Но большинство из них используют иностранные наработки, что в настоящий момент и на перспективу неприемлемо. Также все профессионалы никогда не занимались этим специфическим сектором экономики – сельским хозяйством. Так что здесь придётся ещё поискать участников.