Внедрение

Разработка технологии испытаний бортовой аппаратуры в космическом пространстве

11 Ноября 2024
Разработка технологии испытаний бортовой аппаратуры в космическом пространстве

Российские исследователи компании, входящей в структуру Роскосмоса, разработали модель и алгоритм подготовки и проведения испытаний бортовой аппаратуры космических аппаратов в открытом космическом пространстве. Рассмотрена последовательность действий, позволяющая повысить достоверность экспериментальной отработки. Уточнён конструктивно-технологический облик стенда, включающего тестовые блоки внутри герметичного отсека орбитальной станции и крейт (crate – контейнер) в открытом космическом пространстве для установки унифицированных модулей с испытуемой бортовой аппаратурой. Определены технические требования к крейту.

Выполнена эскизная проработка крейта для испытаний бортовой служебной и целевой аппаратуры космических аппаратов в составе унифицированных модулей в открытом космическом пространстве.

Авторы исследования отмечают, что результаты испытаний повышают степень соответствия цифрового двойника бортовой аппаратуре. При этом снижается риск крупных финансовых потерь, связанных с возможными отказами бортовой аппаратуры в процессе лётных испытаний, делающими невозможной дальнейшую полноценную штатную эксплуатацию космических аппаратов КА. Унификация этапов подготовки и проведения испытаний сокращает требуемые временные и финансовые затраты и делает их доступными для бортовой аппаратуры различного назначения. Также была показана целесообразность проведения дополнительных натурных испытаний бортовой аппаратуры на орбитальной станции в реальных полях мировых систем наземной и космической связи и навигации, гравитационных и/или магнитных полях Земли, Солнца и Луны с реальными образами звёзд, планет, спутников, космических аппаратов во всех диапазонах излучений, исследуемых факторов космического пространства одновременно с синергетическим воздействием дестабилизирующих факторов космического пространства (ДФКП), а также в режиме функционировании аппаратуры, максимально приближенном к штатному. В совокупности с наземной экспериментальной отработкой будет повышена достоверность подтверждения соответствия характеристик аппаратуры требованиям, заданным в техническом задании.

Данные испытания позволят уточнять и верифицировать расчётные модели аппаратуры, повышать достоверность расчётов, проведённых до этапов разработки изделий или экспериментальной отработки. Испытания позволят своевременно выявить слабые места в технических решениях, заложенных в аппаратуре, устранить их, доработать бортовую аппаратуру, как следствие — снизить риск получения отрицательного результата при последующих летных испытаниях космических аппаратов и минимизировать объём доработок аппаратуры перед запуском в серийное производство. Особенно это важно для мелкосерийного производства космических аппаратов.

Учёные ставили перед собой следующие задачи:

• определить последовательность подготовки и проведения испытаний аппаратуры в космическом пространстве;

• сформулировать требования к стенду;

• определить состав стенда и назначение его составных частей;

• сформулировать требования к крейту и предложить его облик;

• предложить конструктивно-технологический вариант унифицированного модуля.

Ниже детализированы некоторые используемые в статье термины:

• Крейт для испытаний в космическом пространстве (крейт ИКП) — каркас с установленными в нём унифицированными модулями с испытуемой аппаратурой и служебными блоками для организации испытаний бортовой аппаратуры в космическом пространстве.

• Каркас крейта ИКП — конструкция, предназначенная для установки унифицированных служебных блоков и унифицированных модулей с испытуемой аппаратурой. Каркас крейта содержит шину питания и заземления; коммуникационную шину, предназначенную для информационного обмена между блоками и тестовым оборудованием; привалочную плоскость для обеспечения температурных режимов и ловители для юстировки позиционирования модуля в крейте.

• Унифицированный модуль ИКП — модуль с размещаемой в нём испытуемой бортовой аппаратурой. Помимо испытуемой аппаратуры, в состав модуля входят служебные субблоки, обеспечивающие телеметрирование процесса испытаний и сопряжение тестовой аппаратуры с испытуемой через универсальный разъём. Унифицированный модуль, имеющий минимальную высоту, называется единичным, при этом высота любого модуля кратна высоте единичного модуля и не может превышать 10 единиц.

• Ловитель — элемент конструкции крейта, производящий захват направляющих элементов модуля с целью его точного позиционирования в крейте для дальнейшей стыковки унифицированного соединителя.

Рассмотрена последовательность подготовки и проведения испытаний аппаратуры в открытом космическом пространстве на орбитальной станции. Уточнён конструктивно-технологический облик стенда, включающего тестовые блоки внутри герметичного отсека орбитальной станции и крейт в открытом космическом пространстве для установки унифицированных модулей с испытуемой бортовой аппаратурой. Определены технические требования к крейту. Выполнена эскизная проработка крейта для испытаний бортовой служебной и целевой аппаратуры космических аппаратов в составе унифицированных модулей в открытом космическом пространстве.

Отмечены положительные эффекты от подготовки и проведения в рассмотренной последовательности испытаний аппаратуры в открытом космическом пространстве на орбитальной станции.

В совокупности с наземной экспериментальной отработкой повышается достоверность подтверждения соответствия характеристик аппаратуры требованиям, заданным в техническом задании. Результаты испытаний повышают степень соответствия цифрового двойника бортовой аппаратуре. Снижается риск крупных финансовых потерь, связанных с возможными отказами бортовой аппаратуры в процессе лётных испытаний, делающими невозможной дальнейшую полноценную штатную эксплуатацию КА. Унификация всех этапов подготовки и проведения испытаний сокращает требуемые временные и финансовые затраты и делает их доступными для бортовой аппаратуры различного назначения.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный Telegram-канал

По материалам открытых источников

Короткая ссылка:  vestnik-glonass.ru/~7hBZW
18.07.2025
Успешная посадка «Тяньлун-2» — это не просто техническое достижение. Она показывает, что Китай активно развивается в космической отрасли.
15.07.2025
К весне 2026 года в России заработает система идентификации беспилотных летательных аппаратов, сообщил на встрече с Президентом РФ Андрей Никитин, исполняющий обязанности министра транспорта.
15.07.2025
В отсутствие чётких правил Европейский союз предложил Закон о космосе – комплекс мер, призванный сделать европейский космический сектор более чистым, безопасным и конкурентоспособным как на внутреннем, так и на международных рынках.
11.07.2025
В статье, опубликованной в журнале «Экономика космоса», был проведён анализ эффектов, которые возникают благодаря вертикальной интеграции, массовому производству спутников и абонентского оборудования, а также переходу к работе в высокомаржинальных отраслевых сегментах.

СТАТЬИ ГЛОНАСС

Киберугрозы как реальность сегодняшнего дня
В 2024 году в нашей стране было зарегистрировано более 765 тысяч правонарушений, совершённых с применением информационно-телекоммуникационных технологий, что составляет приблизительно 40% от общего объёма преступлений. Такие данные приводит новостной сайт Центра международной торговли со ссылкой на МВД РФ. В этом году их будет зарегистрировано ещё больше – можно ни разу не сомневаться. Цифровизация проникла во все сферы деятельности, сделав нашу жизнь продвинутой и комфортной – мы привыкли мгновенно оплачивать всё что хочешь через банковские приложения, управлять бизнесом в облаке, общаться в социальных сетях и одним кликом скупать содержимое маркетплейсов. Увы – вслед за этими удобствами идут массовые утечки персональных данных, промышленный шпионаж, репутационные риски, угрозы национальной безопасности и пр. Это не только экономические потери, но и серьёзные вызовы для государственного суверенитета и общественного доверия к цифровым системам.