Внедрение

Разработка технологии испытаний бортовой аппаратуры в космическом пространстве

11 Ноября 2024
Разработка технологии испытаний бортовой аппаратуры в космическом пространстве

Российские исследователи компании, входящей в структуру Роскосмоса, разработали модель и алгоритм подготовки и проведения испытаний бортовой аппаратуры космических аппаратов в открытом космическом пространстве. Рассмотрена последовательность действий, позволяющая повысить достоверность экспериментальной отработки. Уточнён конструктивно-технологический облик стенда, включающего тестовые блоки внутри герметичного отсека орбитальной станции и крейт (crate – контейнер) в открытом космическом пространстве для установки унифицированных модулей с испытуемой бортовой аппаратурой. Определены технические требования к крейту.

Выполнена эскизная проработка крейта для испытаний бортовой служебной и целевой аппаратуры космических аппаратов в составе унифицированных модулей в открытом космическом пространстве.

Авторы исследования отмечают, что результаты испытаний повышают степень соответствия цифрового двойника бортовой аппаратуре. При этом снижается риск крупных финансовых потерь, связанных с возможными отказами бортовой аппаратуры в процессе лётных испытаний, делающими невозможной дальнейшую полноценную штатную эксплуатацию космических аппаратов КА. Унификация этапов подготовки и проведения испытаний сокращает требуемые временные и финансовые затраты и делает их доступными для бортовой аппаратуры различного назначения. Также была показана целесообразность проведения дополнительных натурных испытаний бортовой аппаратуры на орбитальной станции в реальных полях мировых систем наземной и космической связи и навигации, гравитационных и/или магнитных полях Земли, Солнца и Луны с реальными образами звёзд, планет, спутников, космических аппаратов во всех диапазонах излучений, исследуемых факторов космического пространства одновременно с синергетическим воздействием дестабилизирующих факторов космического пространства (ДФКП), а также в режиме функционировании аппаратуры, максимально приближенном к штатному. В совокупности с наземной экспериментальной отработкой будет повышена достоверность подтверждения соответствия характеристик аппаратуры требованиям, заданным в техническом задании.

Данные испытания позволят уточнять и верифицировать расчётные модели аппаратуры, повышать достоверность расчётов, проведённых до этапов разработки изделий или экспериментальной отработки. Испытания позволят своевременно выявить слабые места в технических решениях, заложенных в аппаратуре, устранить их, доработать бортовую аппаратуру, как следствие — снизить риск получения отрицательного результата при последующих летных испытаниях космических аппаратов и минимизировать объём доработок аппаратуры перед запуском в серийное производство. Особенно это важно для мелкосерийного производства космических аппаратов.

Учёные ставили перед собой следующие задачи:

• определить последовательность подготовки и проведения испытаний аппаратуры в космическом пространстве;

• сформулировать требования к стенду;

• определить состав стенда и назначение его составных частей;

• сформулировать требования к крейту и предложить его облик;

• предложить конструктивно-технологический вариант унифицированного модуля.

Ниже детализированы некоторые используемые в статье термины:

• Крейт для испытаний в космическом пространстве (крейт ИКП) — каркас с установленными в нём унифицированными модулями с испытуемой аппаратурой и служебными блоками для организации испытаний бортовой аппаратуры в космическом пространстве.

• Каркас крейта ИКП — конструкция, предназначенная для установки унифицированных служебных блоков и унифицированных модулей с испытуемой аппаратурой. Каркас крейта содержит шину питания и заземления; коммуникационную шину, предназначенную для информационного обмена между блоками и тестовым оборудованием; привалочную плоскость для обеспечения температурных режимов и ловители для юстировки позиционирования модуля в крейте.

• Унифицированный модуль ИКП — модуль с размещаемой в нём испытуемой бортовой аппаратурой. Помимо испытуемой аппаратуры, в состав модуля входят служебные субблоки, обеспечивающие телеметрирование процесса испытаний и сопряжение тестовой аппаратуры с испытуемой через универсальный разъём. Унифицированный модуль, имеющий минимальную высоту, называется единичным, при этом высота любого модуля кратна высоте единичного модуля и не может превышать 10 единиц.

• Ловитель — элемент конструкции крейта, производящий захват направляющих элементов модуля с целью его точного позиционирования в крейте для дальнейшей стыковки унифицированного соединителя.

Рассмотрена последовательность подготовки и проведения испытаний аппаратуры в открытом космическом пространстве на орбитальной станции. Уточнён конструктивно-технологический облик стенда, включающего тестовые блоки внутри герметичного отсека орбитальной станции и крейт в открытом космическом пространстве для установки унифицированных модулей с испытуемой бортовой аппаратурой. Определены технические требования к крейту. Выполнена эскизная проработка крейта для испытаний бортовой служебной и целевой аппаратуры космических аппаратов в составе унифицированных модулей в открытом космическом пространстве.

Отмечены положительные эффекты от подготовки и проведения в рассмотренной последовательности испытаний аппаратуры в открытом космическом пространстве на орбитальной станции.

В совокупности с наземной экспериментальной отработкой повышается достоверность подтверждения соответствия характеристик аппаратуры требованиям, заданным в техническом задании. Результаты испытаний повышают степень соответствия цифрового двойника бортовой аппаратуре. Снижается риск крупных финансовых потерь, связанных с возможными отказами бортовой аппаратуры в процессе лётных испытаний, делающими невозможной дальнейшую полноценную штатную эксплуатацию КА. Унификация всех этапов подготовки и проведения испытаний сокращает требуемые временные и финансовые затраты и делает их доступными для бортовой аппаратуры различного назначения.


Подписывайтесь на журнал «Вестник ГЛОНАСС» и навигационный Telegram-канал

По материалам открытых источников

Короткая ссылка:  vestnik-glonass.ru/~7hBZW
13.11.2024
Еврокомиссия объявила, что после завершения оценки оптимизированного и окончательного предложения (OBAFO), она заключила концессионный контракт на разработку, развёртывание и управление спутниковой системой безопасной связи.
12.11.2024
Геостационарный оператор «Виасат» ведёт активные переговоры о покупке широкополосной ёмкости будущих спутников Telesat на низкой околоземной орбите.
11.11.2024
До конца года еще два малых поселка Хабаровского края будут подключены к интернету через спутники ФГУП «Космическая связь», заявил генеральный директор ГП КС Алексей Волин на встрече с правительством региона.
06.11.2024
Безопасность грузоперевозок выходит на первый план в нашем мире, где без грамотной логистики нынче шагу не ступить. В связи с ростом технологий возникают новые способы защиты грузов и транспортных средств. Так возникли системы, использующие для обеспечения безопасности сигналы глобальных навигационных спутниковых систем, напоминает статья в международном научном журнале «Вестник науки».

СТАТЬИ ГЛОНАСС

Необходим поиск отечественных специалистов в области кибербезопасности сельского хозяйства
Перспективы реализации дорожной карты одного из направлений Национальной технологической инициативы (НТИ) в области сельского хозяйства, по просьбе журнала «Вестник ГЛОНАСС», оценил эксперт в навигационно-информационной сфере Семён Видный. В современных, быстроизменяющихся условиях особого решения требуют вопросы безопасности (направление SafeNet), тем более на таком значимом для государства агросекторе. В этом направлении на данный момент – огромное количество профессиональных участников. Но большинство из них используют иностранные наработки, что в настоящий момент и на перспективу неприемлемо. Также все профессионалы никогда не занимались этим специфическим сектором экономики – сельским хозяйством. Так что здесь придётся ещё поискать участников.
Аграриям предстоит работать в одной системе координат
Как известно, основой современного цифрового агрокомплекса является картогорафирование. Семён Видный, эксперт в области применения современных навигационно-информационных технологий в сельском хозяйстве поделился с читателями журнала «Вестник ГЛОНАСС» с кругом решаемых проблем при обработке массивов картографических данных. Таким образом, выяснилось, что все используют данные в различных системах координат, но пытаются укладывать их на одну картографическую основу и, соответственно, получают нестыковки и ошибки. Всё это приводит к тому, что используемые данные из Роскадастра, из Центров химизации и от высокоточных источников (данные дистанционного зондирования Земли, данные с беспилотников и высокоточных навигационных или геодезических приборов) не состыковываются друг с другом и только вводят в заблуждение сельхозтоваропроизводителей и собственников сельхозземель. И это также отражается на отношениях со смежными землепользователями.